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Abstract. Monte Carlo simulations are performed on the two-dimensional square-lattice 
Ising model to calculate the intrinsic structure, in the sense of Bricmont et al, of the 
phase-separation line. Based on the calculated temperature dependence and the system-size 
dependence, the critical behaviour of the intrinsic structure is discussed. 

1. Introduction 

The one-dimensional interface is known to be rough and delocalised globally at any 
finite temperature T. A typical example is the phase-separation line (PSL) in the 
two-dimensional Ising model below the critical temperature T,. Detailed studies 
(Fisher and Ferdinand 1967, Gallavotti 1972, Abraham and Reed 1976, Aizenman 
1980) have led us to a good understanding of the long-distance (global) fluctuation 
properties of the PSL. It has been established that for a PSL with length (i.e. end-to-end 
distance) N, the global fluctuation width W (  T )  of the PSL is O( NI’*) and diverges as 
N + CO. Nevertheless, after scaling by the interface width and the interface profile 
have well defined limits; the scaled interface profile is expressed in terms of the integral 
of a Gaussian function with the variance a ( T ) =  W ( T ) / N ” *  which is the scaled 
interface width. As T + T,, a( T )  itself diverges as I T - Tc\-”2. 

As for the short-distance (local) behaviour of the PSL, it has been believed that the 
PSL should have a well defined intrinsic structure such as the intrinsic width. The intrinsic 
structure of the PSL is itself quite an interesting problem to study and is important 
since many problems (for example, the interface dynamics) are related to such local 
properties of the interface. There are two ways of defining the intrinsic structure of 
the PSL (see, e.g., Abraham 1986): one was proposed by Abraham (1984) (see also 
Huse (1986), Abraham and Davies (1986)) and the other was proposed by Bricmont 
er al (1981, hereafter referred to as BLP). In the former, the magnetisation profile and 
the interface tension are utilised to define and calculate exactly the intrinsic width 
through a convolution. In the latter, which is more microscopic than the former, 
although a rigorous qualitative analysis was made by BLP, no detailed quantitative 
analysis has yet been undertaken, which would be important in clarifying the relation 
between the two ways of defining the PSL. 

The purpose of this paper is to study quantitatively the local property of the PSL 

for the two-dimensional Ising model following the line of BLP. 
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2. Intrinsic structure of the PSL 
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The Ising model Hamiltonian with a ferromagnetic coupling J is given by 

where U,,, E (1, -1) and the sum is taken over all nearest-neighbour spin pairs on a 
square lattice. The critical temperature T, is given by kB T,/ J = 2/log( 1 + 3) = 2.26. 
We consider an N X  N size system with a special boundary condition where all the 
uppermost (lowermost) boundary spins are fixed to be -1 (+l) .  For simplicity, the 
linear size N is chosen to be even. Under this boundary condition, we can draw one 
and only one PSL as a path connecting the dual lattice sites corresponding to the 
antiphase boundary (figure 1). Any PSL with length L starts from the dual lattice site 
(xo, yo)  = (-  N/2 ,0 )  and ends at the dual lattice site ( x L ,  y L )  = (N/2 ,0 ) ,  forming a 
path (xo, yo) -, (x , ,  y , )  +. (xz,  y 2 )  + .  - + ( x L ,  y L ) .  Note that the second coordinate yi 
of a point ( x i ,  y , )  in the path represents the height of the PSL at the point. If we wish 
to express the height y of the PSL as a function of the first coordinate x as y = f ( x ) ,  
the function f is multivalued in general due to the presence of the kinks and overhangs. 
At low temperatures, the PSL is well described by the solid-on-solid (SOS) model (Burton 
et a1 1951) where the overhang configurations are forbidden and the excitations are 
limited to the kink type ones. At higher temperatures where large non-sos type 
excitations are present, we have several choices of how to draw the PSL. We fix the 
drawing rule of the PSL in the following. 

Let us briefly summarise the basic ingredients of the BLP theory on the intrinsic 
interface structure of the two-dimensional Ising model. A deformation of the PSL is a 
portion of the PSL where the heights y (as a function of x)  are multivalued (figure 2). 
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- N I 2  . - 4  - 2  0 2 4 * N I 2  

Figure 1. Adopted boundary condition and an example of PSL. An Ising spin with +1 (-1) 
state is denoted by + ( - 1 .  Spins on the upper-half (lower-half) rim are fixed to be - (+). 
Under the boundary condition, we can always draw a PSL starting (ending) at the middle 
of the left (right) side, passing through the dual lattice sites. Bubbles, the clusters of flipped 
spins, not belonging to the PSL are also shown. 

X 



Intrinsic structure of the phase-separation line 5983 

I I  I 
I 1  
I I  

I 
I I  
I I  

I I 
I I  I 1  
I I  I I  
I I  I X 

n -  i 
1 1  I 1  

I 1  
I I  

I I  - *  
I 1  
I I 

Figure 2. Four deformations in the PSL of figure 1. Entry point (exit point) of each 
deformation is denoted by 0 ( x 1. We have D-, = 2 ,  D - ,  = -1,  Dz = -2  and D, = 1. For 
other values of x, we have D, = 0. 

In a single PSL, there may exist many deformations connected by regular components 
where heights are single valued. For a deformation starting at some path position s 
and ending at a path position e (figure 2 ) ,  the height difference Ay = y e  - y ,  measures 
the amount of deformation. The most important quantity in the discussion of BLP is 
the variable D, defined by 

if a deformation starts (ends) at path position s(e) with x,= i 
otherwise. 

D, = [ ~'"' 

(2.2) 

We remark here that D, has a favourable property that does not depend on the drawing 
rules of the PSL. 

Local statistical properties of the deformations are characterised by a sequence of 
moments {d,}:=, defined by 

dn = (IDlI") (2.3) 

which is independent of i in the N + CO limit (thermodynamic limit). Since any one 
of {d, , }  represents the 'local thickness' of the PSL in some sense, the quantity w:" 
given by 

W y =  ( d , ) " "  (2.4) 

can be used as a measure of the local interface width which we call the nth intrinsic 
width of the PSL. In particular, the quantities d 2  and wgLp were originally introduced 
and  discussed by BLP. As was pointed out in their discussion, d ,  and w!Lp are related 
to the scaled global width a( T )  of the PSL as 

>2. / 2 

a ' ( T ) =  lim (DoD,)  
N - r  ! = - N I 2  

I f 0  

In the above, translational invariance of the system has been taken into account. If 
the first term in (2.5) dominates as T +  T,, as was conjectured by BLP, we have 

d 2 - a 2 - ( T c - T ) - '  as T + T, (2.6) 
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where the exact result U* = l/sinh[2( K - K * ) ]  (Abraham and Reed 1976) has been 
utilised, with K = J / ( k , T )  and K *  = - f log  tanh K. At low temperatures where the 
PSL is correctly described by the SOS model, D, corresponds to a kink excitation 
( D ,  = h,,, - h , ) .  In this low-temperature region, (D,D,) - 0 for i Z j due to the statistical 
independence of the kink excitations in the SOS model. Hence, from (2.5) we have 
the obvious low-temperature behaviour of d2 

d, cr2 at low temperatures. (2.7) 

The conjectured critical behaviour (2.6) is less obvious and requires further study. 
Also, the quantity d,, with other values of n, should be studied to investigate the local 
structure of the PSL in more detail. 

We are also interested in the number of deformations Nd and its density n d :  

n d =  lim N d / N  
N - x  

from which the nth moment of fluctuation per deformation, denoted by A,,  is calculated 
as 

A, = d,/ n d .  (2.9) 

To discuss the critical behaviour of the intrinsic structure, we introduce the following 
critical exponents: 

d, - ( T, - T)-S,l  

A, - ( T, - T)-',* 

n d (  T )  -- ( T c -  

T +  T, 

T +  T, 

T +  T, 

8, = 6, + e. 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

3. SOS model results 

The one-dimensional SOS model describing the low-temperature behaviour of the PSL 
in the Ising model defined by (2.1) has the Hamiltonian 

We can calculate the intrinsic interface structure exactly in the SOS model. The results 
presented below will serve as the reference frame for understanding the actual behaviour 
of the PSL. 

In terms of the kink variables { k , }  defined by k,  = h,,, - h , ,  the Hamiltonian (3 .1 )  
takes the following separable (non-interacting) form: 

H S o S =  25 ':I Ik,]. 
, =o 

(3.2) 

To be precise, the k, above are not independent due to the constraint ho = hN = 0 which 
amounts to k ,  + k , + .  . .+ kN = O .  However, this constraint is irrelevant in the N+co 
limit as can easily be proved and is neglected for calculation of the quantities with 
which we are concerned. 
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The quantity d, defined in (2.3) can be calculated as the nth moment of the kink 
variable: 

d S O S  = 
n (lkl") 

= ( k = - x  f lkl" exp(-2PJlkl))( k = - x  f exp(-2PJIkl))-' (3.3) 

where we have denoted P = (k ,T) - ' .  In particular, we have 

dsos = l /sinh(2PJ) 

dsos = 1/2sinh2(PJ). 

The deformation number density is calculated as 

(3.4) 

(3.5) 

= 2 e x p ( - 2 ~ ~ ) [ 1  + e x p ( - 2 ~ ~ ) ] - '  (3.6) 

which is a monotonically increasing function of temperature. From (3.4)-(3.6) we have 

ASos= dsos/nnoS= [ l  -exp(-ZPJ)]-' (3.7) 

ASoS= dsos/nnos= [l +exp(-2pJ)][l - e ~ p ( - 2 P J ) ] - ~ .  (3.8) 

4. Monte Carlo calculation 

We performed standard Monte Carlo simulations on the two-dimensional square-lattice 
Ising model with N x N system size under the same boundary condition as shown in 
figure 1, varying the temperature T and the linear system size N (16-128). To improve 
the statistics, d ,  and d,  are actually calculated as 

1 
d ,  =NI (IQl) (4.1) 

1 

which is justified from the i independence of ( lD, / )  and (of) in the N + CO limit. Note 
that in (4.2) we are not calculating (1/ N ) ( ( Z , D , ) * )  which is just (T'( T )  in the N --* 00 limit. 

We calculated the temperature dependences (figures 3 and 4) and the system-size 
dependences at T, (figures 5 and 6) of d ,  and d 2 .  At low temperatures, both d ,  and 
d ,  lie close to the curves of corresponding SOS model results dsos and dzoS. For d , ,  
we see a good agreement of (2.7) for a very wide range of temperatures. In figures 5 
and 6, the following behaviour is clearly seen: 

d , (  T,) - N o  (finite) for large N (4.3) 

d,( r c )  - N for large N. (4.4) 
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Figure 3. Temperature dependence of d ,  obtained by Monte Carlo simulation (0: 32 x 32; 
A:  64x 64; X:  128 x 128). Each point, except those at  T = T,, represents the average over 
4 x  I O 4  steps per site. For T =  Tc, averages over lo5 steps per site are shown. The broken 
curve represents dSoS. 

5 0  i t 

0.1 
0.6 8.8 1 .o 

ri T, 

Figure 4. Temperature dependence of d,, with details as figure 3. The broken curve 
represents dsos and the full  curve the values of u2. 

From the standard arguments of finite-size scaling theory (see, e.g., Barber 1983), 
results (4.3) and (4.4) imply 

(4.5) 

dZ-IT- Tcl-’ as T-,  T,. (4.6) 

In particular, the behaviour (4.6) confirms the relation (2.6). Thus, we obtain the 

d ,  - 1 T - T,Io (finite) as T + T, 
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0 50  100 I! 
N 

Figure 5. Size dependence of d ,  at T = T,. We denote the linear size of the system by N. 
Each point represents an average over lo5 steps per site. 

11 I 1 I I I I I l l  
1 0  100 200 

N 

Figure 6. Size dependence of d ,  at T = T,, similar to figure 5 .  The line has a slope of one. 

values of exponents 8, and defined in (2.10) as 

s ,=o (4.7) 

8 2 =  1. (4.8) 

The number of deformations N d  is also calculated and the results are shown in 
figure 7 (temperature dependence of Nd), figure 8 (size dependence of Nd at T,) and 
figure 9 (temperature dependence of n d ) .  As opposed to the SOS model result (3.6), 
nd( T )  has a maximum around T* = 0.85 T,.  This is the effect of large deformation 
(figure 10) as can be explained in the following. At low temperatures, very small 
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0.6 0.8 1.0 
T I T ,  

Figure 7. Temperature dependence of N, (0: 32 x 32; A: 64 x 64; x :  128 x 128). Each 
point, except those at T = 7,. represents the average over 3 x lo4 steps per site. For T = Tc,  
averages over 4 x lo4 steps per site are shown. 

501 

0 

10 100 2 
N 

Figure 8. Size dependence of Nd at T = T,. Each point represents an average over 4 x lo4 
steps per site. The line has a slope of 0.68 * 0.04. 

numbers of deformations are present. By raising the temperature, we have more and 
more deformations. At the same time, the mean horizontal extent of deformations 
becomes larger and larger. Then, for finite size ( N  x N )  system, there should exist a 
temperature above which Nd do not increase any further but decreases as T increases. 

From figure 8, we obtain 

Nd( T,) - NO' e' = 0.68 * 0.04 for large N. (4.9) 
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t I 
0 

0.6 0.8 1.0 
T I T ,  

Figure 9. Temperature dependence of nd with details as figure 7 .  The broken curve 
represents n;Os. 

( a )  l b )  

Figure IO. ( a )  Typical snapshot of the spin configuration (.= +1) at T =  7,. The system 
size is 128x 128. ( b )  Corresponding dual lattice points forming the PSL which contains 
large deformations. 

Then from (2.8) and from the finite-size scaling theory we have 

nd( T )  - ( T,- TIB T +  T, 

e = 1 - e' = 0.32 + 0.04. 

S; = e = 0.32 * 0.04 

S; = 1 + e = 1.32 * 0.04. 

Combining (2.9)-(2.13) and (4.7)-(4.10), we have 

(4.10) 

(4.11) 

(4.12) 
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5. Summary 

In this paper we have presented a quantitative analysis of the intrinsic interface structure 
in the sense of Bricmont et a1 (1981) by using the Monte Carlo method. As a summary 
of this paper, we should like to remark on the following three points. 

( i )  Agreements of (2.6) and (2 .7 )  are clearly seen. Moreover, interestingly enough, 
d, (=local quantity) and  (+’ (=global quantity) behave very much alike over a very 
wide range of temperature. 

(ii) Quite different critical behaviours between d,  (non-divergent) and d2 (diver- 
gent) may cause a problem in choosing the most suitable quantity among { w ! : ~ ~ }  as 
the definition of the intrinsic width. 

(iii) The deformation number density n d ,  calculated for the first time, shows 
non-trivial behaviour. In particular, the critical behaviour lim T+T, nd( T) = 0 is 
observed. 

In respect of point (ii), it is an important task to obtain the full form of the 
probability distribution function of { D i } .  As for the behaviour of n d ,  we d o  not have 
a satisfactory explanation for the obtained value of the exponent 8, for which calculation 
of the deformation size distribution may be helpful. These tasks are left for future 
study and will be published elsewhere. 

Analysis of the intrinsic interface structure made in this paper is restricted to that 
in the sense of Bricmont et al. Our calculation presented in this paper is the first step 
towards clarifying the relation between the BLP theory and the Abraham theory, which 
is also an important future problem. 
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